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Max-Min Contro.1  Problems: A System 
Theoretic  Approach 

MICHAEL  HEYMANN,  MEIR  PACHTER, AND RONALD J. STERN 

Abstract--In this pap a “max-min controllability”  concept for a 
situation in which two linear control systems are in conflict is introdoced 
and characterized This concept is employed in solving a max-min linear- 
quadratic control problem with terminal  state constraiots and the relation- 
ship with differential  game theory is discussed. 

I.  INTRODUCTION 

C ONSIDER the following linear system  with dual con- 
trols: 

i = A ( t ) x + B , ( t ) u + B , ( t ) u ,   x ( t o ) = x 0 .  (1.1) 

Here x = x ( t )  is  the state vector in Euclidean  space R”, 
with x. a specified initial state at time t,. The vectors 
u = u ( t )  E R 9 and t’ = u ( t )  E R me, regarded, respectively, 
as the pursuer and evader controls, are required to satisfy 
JIllu(t)l12dt< x and JIllc(t)l12dt< oo on each  compact 
interval I ~ [ t , ,  oo), where 1 1   1 1  denotes the Euclidean 
norm. The matrices A ,  B,, and Be are  assumed to have 
entries which are real and measurable on [to, w). For any 
pair of controls u and o we shall  denote by x ( t )  
= +(t,  to, xo, u,  u)  the corresponding  unique solution of  (1.1) 
emanating  from x. at time to ( t  2 to). 

In situations in which the pursuer and evader are in 
competition, it is natural to seek a  comparison between 
their control capabilities. Towards this end we introduce 
the following concepts. 

Definition 1.1: An event (to,xo) in system  (1.1)  is 
strongly max-min controllable at time T ( T  2 to) if for 
each  announced  evader control o on [ to ,  T ]  there ex- 
ists a  pursuer control u on [to, TI such  that x( T )  = 
+( T,  to, xo, u, c)  = 0. The event (to, xo) is strongly max-min 
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controllable if it is strongly max-min controllable for some 

Definition 1.2: An  event (to,xo) in  system (1.1) is 
weakly max-min controllable if for each a_nnounced evader 
control 2, on [to, w), there-exists a time t,= ;(u) 2 to and a 
pursuer  control u on [to, t ]  such  that x (   t )  = +(; to, xo, u, u) 
= 0. 

Clearly strong max-min controllability of an event  im- 
plies weak  max-mir; controllability. That the converse is 
also true is not  immediately evident since it is not clear 
that when  weak  max-min controllability holds there exists 
any  one  time T at which capture (i.e., x (  T )  = 0) can  be 
imposed  by the pursuer in face of any  evader control. 
This, however,  is indeed the case as is  shown in  [l],  and 
the two concepts of max-min controllability are actually 
equivalent, Henceforth, we  will  simply  speak about m x -  
min controllability referring to the simpler Definition 1.1. 

It  should  be  observed  that max-min controllability gen- 
eralizes the concept of controllability in linear control 
systems as expounded  by  Kalman (see,  e.g., [2], [3]). While 
the existing “one player” controllability theory will be 
brought to bear on our  development of the two  player 
case, certain significant difficulties and interesting dif- 
ferences arise, as will be pointed out below. 

Our results on max-min controllability will  be employed 
in solving the following restricted end-point max-min con- 
trol problem, denoted ( P ) .  

( P ) :  We  are given a linear dual control system  (1.1) 
with x,#O. The  evader  announces  a control function u, 
and the pursuer (if he has the capability) responds with a 
control function u such  that x ( T )  = 0, where T > to is a 
prespecified  time. The players’ control choices are to be 
made in accordance with the optimization of the payoff 
functional 

T E [ to, 00). 

P(u,t.) 2 IT[ Ilu(t)1I2- Ilu(t)l12]dt (1.2) 

where it is understood  that the evader is the maximizing 
player while the pursuer is the minimizer. 

*O 
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Let @(t, to) denote the fundamental  matrix solution cor- 
responding to system  (1.1) and define the vector function 

z(t)=@(to,t)x(t) ,  t > t,. (1.3) 

It is readily verified that z satisfies the following dif- 
ferential equation: - - 

i = B p ( t ) u - B e ( t ) o  z(ro)=x(to)=xo, (1.4) 

where gp(t)  A @(to,t)Bp(t)  and i e ( t ) =  -@(to,t)Be(t);  and 
z ( t )  = 0 if and only if x ( t )  = 0. Hence, system  (1.4)  is 
completely equivalent in respect to max-min controllabil- 
ity to system  (1.1). 

A more general type of max-min control situation can 
be described by a pair of linear control systems: 

i p = A p ( t ) x p + B p ( t ) ~ ,  x p ( f o ) = x p O  (1.5) 

i e = A e ( t ) x e + B e ( t ) c ,  x e ( f O ) = x d  (1.6) 

where  (1.5) represents the pursuer  dynamics and (1.6) 
represents the evader  dynamics. Both xp and x, are in R“ 
and capture is interpreted as  an event ( t .  x,(t), x,([)) such 
that xp( t )=  xe( t ) .  Hence,  max-min controllability for sys- 
tems  (1.5) and (1.6)  refers to the existence of “capture 
events” as defined above, with Definitions 1.1 and 1.2 
remaining otherwise intact. For  a fixed T > to define 

z ( t ) = @ p ( T , ~ ) x p ( t ) - ~ e ( T , t ) x e ( t ) .  to< t <  T.  (1.7) 

With (1.7).  (1.5) and (1.6)  yield the following differential 
equation for z :  

i = i P ( r ) u - i e ( t ) c ,  ~ ~ t o ~ = ~ p ~ ~ , t o ~ ~ ~ p o - ~ e ~ ~ , t o ~ x ,  

( 1.8) 

where &(t)  QP(T,t)Bp(t) and i e ( t )  A ae(T, t )Be( t )  for 
to Q t < T ;  and QP( T,  t )  and @,( T,  t )  are the fundamental 
matrix solutions for (1.5) and (1.6)$  respectively. It  is 
readily seen that xp ( T )  = xe( T )  if and only if z ( T )  = 0 and 
hence max-min controllability (in  time T )  for  systems 
(1.5) and (1.6)  is equivalent to max-min controllability (in 
time T )  for (1.8). 

Since  system (1.8) is  essentially the same as  (1.4) we 
shall henceforth restrict our attention primarily to systems 
of the form (1.4) to which we shall refer as standard. 

In [4] Ho, Bryson, and Baron applied the variational 
calculus to a linear-quadratic differential game of fixed 
duration (without terminal constraints). They then applied 
their results to problem ( P )  by means of penalty func- 
tions, and for a special case they obtained  a solution as 
well as a sufficient condition for what we termed max-min 
controllability. While in  the present paper we proceed 
from  a  system-theoretic  rather  than  a  variational 
viewpoint, our results on problem ( P )  are related to those 
in [4]. (In this regard see Remark 3.11 and also Section IV 
below.) 

Finally, it was pointed out by a referee that  problem 
( P )  has various similarities with the so called “Stackelberg 

solution” of a  game. In this regard, the interested reader is 
referred to [5] and [6]. 

The organization of the  paper is as follows: In Section 
I1  we shall give an algebraic characterization of max-min 
controllability with some special attention to the  autono- 
mous case. In Section I11 problem ( P )  is  solved, and  in 
Section IV we compare  our results with results and con- 
cepts concerning differential games  with more  elaborate 
information schemes as in Isaacs [7] and Hajek [8],  [9], 
and we discuss the relation between  max-min controllabil- 
ity and feedback. 

11. MAX-MIN CONTROLLABILITY 

For a standard system  (1.4) defines the controllability 
Grammians for the pursuer and evader  by 

We(to,t) 2 Jfl?e(o)i7;(o)do, t > t, (2.2) 
f0 

where the prime  denotes transpose. Clearly W, and We 
are symmetric  nonnegative definite (n X n) matrices. Also, 
since for every pair F, G of symmetric  nonnegative 
matrices % ( F )  c 9. ( F +  G)  (where 9i ( e )  denotes range), 
it can  be  readily  verified  that  the  rank of these 
Grammians is a  nondecreasing and left-co_ntinuous func- 
tion of time. For the one player case, i.e., Be 0, it is  well 
known  that the pursuer  can drive the event (to,zo) to 
( t l , z l )  in system  (1.4) if and only if 

Z o - z l E ~ ( W p ( t o ~ t l > > *  (2.3) 

This result generalizes in the two player case to  the 
following algebraic condition for max-min controllability. 

Theorem 2.1: Given system  (1.4)  with zo#O, a neces- 
sary and sufficient condition for an event (to,zo) to be 
max-min controllable in finite time T >  to is that the 
following conditions hold: 

zo E %.( W, ( t o ,  T ) )  (2.4) 

9i(We(to,T))C9i(Wp(t,,T)). (2.5) 

Proof: Max-min  controllability  in time T is 
equivalent to 

for all evader controls c. Since 



In a  one player linear control system  (i.e., i ie( t> = 0)  it  is 
well  known that if an event (tO,zO) [in  system  (1.4)] can be 
steered to (T,O), then it can also be steered to (T’,O) for 
all T‘> T. In the two player case this is no longer true in 
the sense that the fact that an event (to, zo) is max-min 
controllable in time T does not imply that the same is also 
true for all T’> T. Indeed, there may  exist an interval 
( t l ,  t,] (with to< t ,  < t, < 00) such  that (to,zo) is never 
max-min controllable in time T for T 4(t1,t2]. This fact is 
not surprising when one considers condition (2.5). It is 
then readily observed  that max-min controllability has 
many similarities  to (ordinary) controllability to a time- 
varying manifold, a situation which  received  essentially no 
attention in the literature. The  above  mentioned  phenom- 
enon is illustrated by the following  simple  example. 

ExampIe 2.2: Consider system (1.4) with dimensions 
n = mp = me =2. Let 

where 

0, for t E (0,1] 
1, for tE(1,co) bp ( t >  = 

0, for t E (0,2] 
1, for tE(2,m).  be (‘1 = 

It is  easily  seen that the initial event ( 0, ( y  )) is  max- 
min controllable at every T E I = (1,2] but never for T 4 I .  

For the one player case it  is immediate  from (2.3) that 
for  any to, the set of states zo such that the event (to,zo) is 
controllable constitutes a  subspace of R”.  The  analog of 
this important  geometric fact is also valid  in the two 
player case, as we  now  show. 

Theorem 2.3: Consider system  (1.4). For any to, the set 
C(to) of states zo such that the corresponding event (to,z& 
is max-min controllable is a linear subspace of R”. 

Remark 2.4: It is of course an immediate  consequence 
of Theorem 2.1 that the set of states zo for which the 
corresponding event (to,zo) is  max-min controllable in  (a 
fixed) time T, is a subspace. Theorem 2.3 claims that the 
set of states zo for which the event (to,zo) i s  max-min 
controllable in any time T is also a subspace. This is  less 
obvious especially  when considering our  preceding discus- 
sion in relation to the concept of weak max-min controlla- 

Proof of Theorem 2.3: First  observe  that O E  C (to)  
trivially. Also, if zo satisfies  (2.4) for some T such  that 
(2.5) holds, the same is also true for azo, a E R .  Hence, 
to E C (to> implies that a z o  E C (to) for every real a. Now 
let z i  and zi be in C(t,) and let Ti  denote  the times 
satisfying (2.4) and (2.5) for z& i= 1, 2. If  we assume 
(without loss of generality) that T 2  > 7“ then z i+  z i E  
% ( W3(to, T’)) and since  (2.5) holds for T 2  it follows that 
zi + zo E C (to) and the proof  is complete. 0 

bility. 

Consider now the pair of systems  (1.5) and (1.6) and 
assume  that Ap,  Bp, A,, and Be are  constant matrices. 
Define the following “controllability matrices”: 

p e p , ]  [B,,A,B,; * * ,A:-IBe]. (2.9) 

We can then state the following  result for autonomous 
systems  (which has  no  analog in the time dependent case). 

Theorem 2.5: Consider systems ( I  .5) and (1.6) with A,. 
Bp, A,, and Be constant matrices. Assume that .xeO€ 

%([A,IB,]). Then  a necessary and sufficient condition that 
for any to the event (to,xpo,xd) be  max-min controllable is 
that 

X p O E  q [ApIBpI) (2.10) 

~ ( [ ~ e I ~ e l ) ~ ~ ( [ ~ p I ’ p l ) .  (2.1  1) 

and 

Moreover, if ( t O , ~ p O , x e O )  is max-min controllable, then it is 
max-min controllable in  time T for every T > to. 

Proof: Max-min controllability is equivalent to the 
existence of a time T > to such  that at T the reachable set 
of the pursuer system contains the reachable set of the 
evader system. Using the standard exponential notation, 
this  is equivalent to 

eAcTxeO+ ~ ( [ A , I B , ] ) C ~ ~ P ~ X ~ ~ +  % ( [ A , I B , ] )  (2.12) 

which in turn is equivalent to (2.1  1) along with 

eAJxpo- eAeTxeOE $ ( [ A ~ ~ B ~ ] ) .  (2.13) 

Now,  xeoE%([A,IB,]) if and only if eAeTxeoE%(([A,IB,]), 
and again applying the A-invariance property, but to the 
pursuer system, we conclude  that (2.13)  is equivalent to 
(2.10).  Since T > to can be chosen arbitrarily the proof  is 
complete. 0 

Theorem 2.5 states essentially that if the  evader initial 
state is evader-controllable (in the evader control system) 
then  max-min controllability holds if and only if the 
pursuer initial state is pursuer-controllable and the evader 
reachable subspace  (from the origin) is  also pursuer- 
reachable. In case Ap = A ,  we can  subtract (1.6) from (1.5) 
letting x = xp - x,. This gives  us  system (1.1) with Bp 
remaining intact and Be replaced by - Be. In this  case we 
can state the following corollary to Theorem 2.5,  which  is 
a specialization of Theorem 2.1 to the autonomous case. 

Corollary 2.6: Consider system  (1.1)  with A ,  Bp and Be 
constant matrices. A necessary and sufficient condition 
for  max-min controllability of an event ( to,xo)  (for every 
t& is 

xoE q [ A I B p I )  (2.12) 

~ L ( [ A I B ~ I ) c Q ( [ A I B ~ I )  (2.13) 

and 
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in which  case x. can be steered to  the origin  in arbitrarily 
short time in the presence of any  (announced) evader 
control. 

Remark 2.7: While condition (2.13)  is  clearly  satisfied 
whenever '3i ( B e )  c 3 ( l i p ) ,  this condition is  by no means 
necessary. However, in  cases where (2.13) holds and 
$R (B , )E  3 (B,) we  will see later that  our information 
scheme  is  extremely  restrictive and the evader may gain 
significant advantages by  employing a feedback control 
rather than predesignated controls. This interesting situa- 
tion is further discussed in Section IV. 

111. SOLUTION OF PROBLEM (P) 

In this  section  we  will  focus our attention on the fixed 
duration restricted end-point max-min control problem 
( P )  which  was introduced in Section  I. We now rephrase 
problem ( P )  as follows. 

( P ) :  Given system  (1.4)  with zo#O, let T > to be such 
that (2.4) and (2.5) are satisfied,  i.e., zo is max-min control- 
lable in  time T. The evader announces a control o and the 
pursuer responds with a control u such that the associated 
solution of (1.4)  satisfies I( T)=O, while both players 
make their control choices  in accordance with the optimi- 
zation (evader  maximizing, pursuer minimizing) of the 
payoff functional P (u.  u)  given  by  (1.2). 

Let the evader specify a control 1: on [to, TI. Then 

f = i i e ( t ) c ( t ) d r E % [  We(to ,T)]  (3.1) 

expression 

P(Uy,.,)=w'Wp(tO,T)w-y'We(tO,T)y. (3.7) 

The max-min solution will consequently be  obtained as 
the solution (whenever it exists) to  the following quadratic 
programming problem, which we denote P: 

( P )  ~ ~ ~ ~ [ w ' w ~ ( I ~ , T ) ~ - Y ' w , ( I ~ , T ) ~ ]  

subject to the constraint 

w , ( t , , q w = & J -  W,(t,,T)y. (3.8) 

We  shall  need  to make use of the "generalized  inverse" 
M' of a real matrix M which  is the (unique) solution of 
the so called  "Penrose  equations." 

1) M M + M =  M 
2) M'"t= M' 
3) ( M M v ' =  M M t  
4) (MtM)'= M'M. 

Note  that M't= Mt' .  Also, M M t  is the projection onto 
(3 ( M )  along !X(") (where 3. denotes null  space). In 
addition, we  will make use of the  fact  that "x(") 
= X ( M f )  and of the  fact  that if M is symmetric so is Mt. 
For a system of linear equations 

x =  My (3-9) 

the general solution is  expressible as 

y=M'x+%(M) .  (3.10) 
J r O  (For a general  theory of generalized  inverses and com- 

and there exists y E R" such that  putational methods, the reader is referred to [ 111.) 
In view  of  (3.10), the general solution to (3.8)  is  given 

C T i e ( r ) u ( t ) d t =  we( to ,T)y .  (3.2) 
10 

Due to  (2.4) and (2.5) 
w =  W,(I0- Wa)+ a (  W,) (3.1 1 )  

.~ . .  
when  (2.4) and (2.5) hold. Here we  have  simplified nota- 
tion temporarily and written Wp in place of Wp(to, T )  and 
similarly for We. Upon employing  1) and 2), the substitu- 

z ( T ) = O = z o +  B p ( t ) u ( t ) d t -  We(t , ,T)y  loT - 
= zo- wp ( to,  T ) ) ~  - we (lo' T ) ~  (3.3) tion of  (3.11) into (3.7)  yields the  quadratic form 

for some w =  w ( y ) E R " .  In view of the well-known P ( U y , ~ , ) = ~ ~ W p ~ ~ - 2 y ' W e W ~ ~ O + Y ' ( W e W ~ W e -  w,)y.  
minimum  energy  law  (see, e.g., 123) any pursuer control (3.12) - 

L$(t)= -B;w ( 3 a 4 )  Upon employing standard arguments of optimization 

will  drive zo to 0 and minimize P (u,  u) against the given u. 
Furthermore,  as is  easily venfiable, 

theory  it  is  readily  verified that a necessary and sufficient 
condition for existence of a maximum of (3.12)  is that 

T wewp~zo€~(wewp'we- we) (3.13) 
p ( ~ ~ , ~ ) = w ' w p ( r O ~ T ) w - ~ o  l l u ( r ) l 1 2 d t .  (3'5) and 

Assuming temporarily that y is  specified, a reapplication We Wp'We - We < 0 (nonpositive definite). (3.14) 
of the minimum  energy  rule  for the evader gives When (2.5)  holds, we also have, in view of the projection 

u,(t)=i;(t)y 
property of the generalized  inverse, that 

(3.6) 
we = wp wp+we. (3.15) 

as evader optimal control for a given y .  Furthermore, for 
the fixed choice of y ,  P(u,,u,) is given  by the quadratic  We will also make use of the following lemmas. 
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Lemma 3.1: Let (2.5) hold. Then 

%(WeW;We- We)=%(We)+  %(We- W,). (3.16) 

Pro03 Clearly, 9L ( we) c %L ( W, wWe - w,). Upon 
employing (3.15) it is also evident that %( We- W,) 
c 5% ( We  Wpt( We - W,)) = %( We W,’We - We). Hence, the 
left side of  (3.16) contains the right. 

Conversely, assume g E %(We W;We - We). Then  upon 
employing (3.15)  it  follows that q E  %( We- W,), where 
q= W:Weg. Again, with  (3.15), we then obtain Wpq= Weg 
and it is readily verified that q- g E %( We), and finally, 
g E %(We - W,) + %( We). Since g was chosen arbitrarily, 
this concludes the proof. 0 

Lemma 3.2: Let (2.4) and (2.5) hold. A necessary and 
sufficient condition that (3.13) holds is that 

zoE%(  we- W,). (3.17) 

Proof: Sufficiency  follows directly from (2.5) and 
(3.15). To prove necessity assume  that (3.13)  holds. Then 
Lemma 3.1 implies that g‘ We Wp+zo= 0 for each g E ?X( We 
- W,). But then Weg= W,g, and  hence 

0 = g’ we w, zo = g‘ w, wpTzo = g‘r, 

where the last equality follows from (2.4). Thus, zo is 
orthogonal to %(We - W,) which  implies  (3.17). 0 

Assume  now that (2.4),  (2.5), and (3.17) hold. Upon 
differentiating (3.12)  we find that  any vector y* satisfying 

( we %?We - w e ) y *  = we wp~ro (3.18) 

maximizes  (3.12). One particular solution of  (3.18)  is  given 
by y * = (We - W,)tz,. Indeed, we have 

(weW;we-  we)(We-%)tz0=  WeWd;(We- W,) 

*(we - Wp)tZo= We WP+Z0 

where the first equality follows by (3.15), and the second 
equality is due to  (3.17) and the fact  that  for  any matrix 
M we have MMtx = x for all n E % ( M ) .  Thus, recalling 
that by  Lemma 3.1, %(WeW:We-  We)=  %(We)+ 
%(We - W,), we have that the general solution of (3.18), 
and therefore to problem (F) ,  is  given  by 

U*=( We- W,)’Z~+ %(We)+ %( We- W,). (3.19) 

Upon subsitution of  (3.19) into (3.11)  we obtain 

w*= T + ( z o -  We( we- W p ) t Z O  

+ We%( We- W,))+ %( W,). (3.20) 

Noting  that We( We - W,)iro= ( We - W,)( We - W,)tzo+ 
W,( We - W,)tzo= zo + W,( We - W,)tzo and  that  
W,%(We- W,)= W,%(We- W,), we obtain 

w * =  - W;wp(( we- Wp)tZo+  %(We-  W,))+ %( W,). 

Substitution of (3.21) and (3.19) into (3.4) and (3.6), 
respectively,  yields the following formulas for the optimal 
controls in problem ( P ) :  

u*( t )=&t ) [  W,’W,(( we- W p ) + Z 0  

.*(t)=ii;(t)[(we- w, ) t ro+%(We)+a(we-   W,)] .  

+%(We-Wp))+%(Wp)] (3.22) 

(3.23) 

Remark 3.3: For the one-player case (i.e., B,(t)=O), 
formula (3.22) reduces to  the optimal control law. in [2] 
and [3] for the problem of driving the event (tO,zo) to 
(T ,  0) with minimum energy. Formula (3.23),  however,  has 
no analog in the one-player theory. Notice also that for 
existence of solutions in the one player minimum energy 
problems, conditions beyond controllability [such as 
(3.14)] do  not arise since the individual Grammians  are 
always semidefinite. 

We shall now compute the optimal value P(u*,o*)  of 
the performance criterion. First, upon  employing (3.17) 
and (3.15) we observe  that y*’(WeW:We- We)y* 
=y*‘ We Wdzo, and hence after substituting into (3.12),  we 
obtain 

P(u*,.*)=2;,W,’z0-z~W,’Wy*. (3.24) 

.(%(We). + a( we - W,)) = r;wp~we%(we - W,) = 

Z ; , ~ t ( Z 0  - (We - w )(We - W,)+Z0 - W,( we - W,)tZ, 

P (u*,o*) = ZA( w, - we,tz0. (3.25) 

Next note that in view of (2.4) and (3.17) rhW;We 

zAW:W,.%( We- W,) = z;%( We- W )  = 0, and hence 
we obtam P(u*,c*) = r;,Wp~zo - LAW, P We(We- W,)tzo = 

= z;WptWp( Wp - We)$,  and finally 

It is interesting to observe  that P(u*,t.*) > 0 for all 
t o # O .  Indeed, choosing y = 0 in (3.12)  gives P (uo, so) 
= z& W;ro. Due to the fact that Wp > 0, so is W: and hence 
P(u*,c*)>  P(uo,uo)~>O. Furthermore, P(u,o,)=O if and 
only if zoE % (W;)= 9Z( W,). But by  (2.5), a (  W,) 
c %(We) and hence, if P(uo,ua)=O then zoE %( W, - 
We) which together with  (3.17)  implies zo= 0. Thus, given 
that zo#O, the evader, by declaring o*, is assured that  any 
pursuer control which steers (to,zo) to (T,O) uses strictly 
more energy than JEllv*(t)l12dt. 

Our observations are summarized in the following. 
Theorem 3.4: Consider a standard system  (1.4)  with 

zo#O and let T > to be such that (2.4) and (2.5) both hold. 
A necessary and sufficient condition that there exist opti- 
mal controls u* and c* in problem ( P )  for the pursuer 
and evader, respectively,  is that (3.14) and (3.17) hold. 
These controls are unique up to subspace translations and 
are given by (3.22) and (3.23). Formulas (3.22) and (3.23) 
uniquely determine P (u*,c*)  via  (3.25). Furthermore, 
P(u*,t.*)>O. (In  formulas (3.14),  (3.17),  (3.22),  (3.23) and 
(3.25)  we have  abbreviated We We(to, T ) ,  W, 
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Remark 3.5: Given  that (2.5) holds, one  can readily 
verify that 

%(We-  W,)c%t(Wp) (3.26) 
and  that 

% ( w e -  Wp)=%(Wp> (3.27) 

if and only if in addition %( W e ) c  %( We- W,) holds. 
Formula (3.26)  implies that, given  (2.5), the set of events 
( fo,zo) for which there exists a solution to problem ( P )  is 
contained in the set of max-min controllable events,  which 
of course was to be expected.  However,  (3.27) indicates 
that max-min controllability in general does  not in  itself 
guarantee existence of an optimal solution to the max-min 
control problem ( P ) .  Hence, there may  exist events which 
are ma-min controllable but for which an optimal solu- 
tion does not exist. This interesting situation deserves 
some further investigation. 

We  now turn our  attention  toward deriving a  more 
tractable characterization of the semidefiniteness condi- 
tion (3.14). To tlus end we require the following  lemmas. 

Lemma 3.6: If A and B are  symmetric and A > 0, B > 0 
(i.e.,  positive definite matrices), then A - B > 0 holds if 
and only if A - ' - B - ' < O .  

Proof: There exist a real nonsingular matrix R such 
that R ' A R  = A and R ' B R  = I where I is the identity 
matrix and A is a real diagonal matrix (see,  e.g.,  [13. p. 
581). If A - B > 0 then R ' A R  - R'BR = A  - I > 0 implies 
that the diagonal elements of A are all > 1 and therefore, 
I - A - ' > o .  n u s ,  R R ' - R R - ~ R ' > o .  Since RR'=B- '  
andRh-'R'=A-',itfollowsthatA-'-B-'<O. 0 

Lemma 3.7: The following  all hold. 
1) W:- We+ < 0 implies  (3.14). 
2) Wp - We > 0 implies WpT- W,' < 0 if and only if 

3)' W, - We > 0 implies  (3.14) if %(We)= %.( W,). 
9.( We)= 9( W,). 

Proof: 1) Write We = We W,'We so that We Wp+We - 
We = We( W:- Wep We. Hence, WpT- We? < 0 implies 
(3.14). 

2) Assume  first that W, - We > 0 and  that Y 3 ( We) 
= %( W,). In view  of the symmetry of We and W, it is 
clear that ( Wp - We)x = ( W:- Wepx =O for all x E q,'l 
(where Y,pL is the orthogonal  complement of 'lj. Hence it 
suffices to show that x'( W; - We?. 6 0 for all x E T. Let 
p =dim (rS) and let V be  an ( n  X p )  basis matrix for 3- 
(i.e., for each x E qr there is a  unique y E R P  such that 
x = Vy). Then Wp - We > 0 is equivalent to V' W, V -  
V' We V > 0. Since both V' Wp V and V' We V are nonsingu- 
lar and hence positive definite, application of Lemma 3.6 
completes the proof. Conversely, suppose W, - We 2 0 
and WpT- WJ < 0. Let x E %( We) = %( Wep. Then x' Wpx 
> 0 and x' WpTx < 0, and since both W, and WJ are 
nonnegative we conclude  that x' W,x=O, whence x E 
TL( W,). Consequently, %(We) c %( W,) and hence 
%( W,)c %( We). Since the opposite inclusion can be 
verified  similarly, the proof  is complete. 

'There is no "only I' in 3); see Lemma 3.9. 

3) An  immediate  consequence of  1) and 2). 0 
Combining  Theorem 3.4 and Lemma 3.7-3) yields the 

following result upon noting that Wp- We > 0 implies 
(2.5). 

Corollary 3.8: Consider system (1.4) with zo#O and let 
T > to be such  that (2.4) holds. In  addition  assume  that 
%(We)= %( W,) (where We and Wp are abbreviations as 
in Theorem 3.4). Then  a sufficient condition for the 
existence of an  optimal solution to problem ( P )  is that 
(3.17) holds and Wp - We > 0. 

In Lemma 3.7  we were able to replace condition (3.14) 
with the simpler condition Wp- We > 0, provided we 
assumed %(We) = %( W,). In the next  lemma we will 
prove  that the same simplification can  be  accomplished if 
instead we assume  that 3 ( W,)= R". 

Lemma 3.9: Assume % (W,) = R" (i.e., Wp >O). Then 
(3.14) holds if and only if Wp - We > 0. 

Proof: There exists a nonsingular real matrix R such 
that R We R = A and R ' Wp R = I where A is a diagonal 
matrix with nonnegative entries (recall the  proof of 
Lemma 3.6). Now Wp-  We= R - ' ' ( I -  A ) R  - I .  Also, 
We  Wp- 'We - We = R - "(A2 - A) R - '. The proof  is  com- 
pleted upon noting that h 2  - A < 0 if and only if I - A > 0. 

0 
In view of the previous lemma we have the following 

additional corollary to Theorem 3.4. 
Corollary 3. IO: Consider system  (1.4)  with 3 ( W,) = R " 

(where W, and We are abbreviations as in Theorem 3.4). 
Then the following hold. 

1) A necessary and sufficient condition that there exists 
an optimal solution to problem ( P )  for  every event in 
{ t o X  R " }  is that Wp - We >0, in which case the optimal 
pursuer control [as given  by  (3.22)]  is unique. 

2) If Wp - We is singular, then  a necessary and 
sufficient condition that there exists an optimal solution to 
problem ( P )  for an event (to. zo) is that zo E 9 (We - W,) 
and Wp - We > 0. 

Remark 3.11: In [4] problem ( P )  was  solved  via a varia- 
tional penalty function  method for the special case where 
Wp - We > 0. The  authors of [4]  suggested that Wp - We 
> O  meant  that the pursuer was  "more controllable" than 
the evader, conveying the intuitive idea that a kind of 
(max-min) controllability property exists. Indeed, Wp - We 
> 0 implies  (2.5). From the development in the present 
paper, however, we see that max-min controllability can 
hold  in the absence of definiteness conditions on W, - We. 

Consider, for example, Wp= I and We= 

e.g., [ 16,  p.  15]), Wp - We > 0 implies det( W,) > det ( We). 
Remark 3.12: Due to the Cauchy-Binet theorem (see, 

IV. FURTHER REMARKS 

In this section we shall address ourselves to the com- 
parison of our results in the previous sections with certain 
results and concepts in the existing body of differential 
game literature. 
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We  have refrained from calling ( P )  a differential game  such  that 
due to the information structure which we have  imposed 
on the problem. While  this  “open-loop’’ structure finds ~.<[A+B~FIB~])IzQ([A+B,FIB,]). (4.2) 
application in  many engineering and economic  models of ‘ 
competitive situations, open-loop strategies are specializa- Clearly, if the evader  can find F such  that (4.2) holds then 

Of more genera’ types Of strategies which can be the pursuer cannot  force capture for  any initial state 
found in the literature’ Two specific  approaches made We &all require the following lemma  (see  [14, p. 
reference to below are Hajek [8], [9], and Isaacs [7]. 

Hajek in [8] considered strategies to be “snap decision Lemma 4.2: Let x and be finite-dimensional linear 
rules”; i.e., a player’s control depends instantaneously spaces, and let : jx be a linear map. Then for a 
upon the opposing player’s control. Hajek considered a linear map :x jx there exists a map c-x-, such 
question which  might be  termed “strategic max-min con- that = GC if and only if %.(G). 
trollability,” or the pursuer’s ability to steer zo to 0 in a In view of Lemma 4.2 we can rephrase the aforemen- 

451 for details). 

variant Of (Ih4) in the Presence Of evader tioned question as follows: given that (4.1) holds, char- 
strategy* For the Of (Possibly time acterize the existence of a constant ( n  x n )  matrix A,  such 
and state constraints he showed that strategic max-min that 
controllability of an event  is equivalent to conventional 
controllability in a certain associated one-player linear $(’e) c %(Be 1 (4.3 1 
system. Controllability in this  system depends  on the 
Pontryagin difference of the players’ control constraints, and 
and after some interpretation it can be shown, as one 
would expect, that this system’s controllability implies % ( [ A  + ~ e I ~ e ] ) z  % ( [ A  + ~ e J ’ p ] ) *  (4.4) 
max-min controllability in our sense. Extensions to other 
types  of strategies and targets as well as strategy design 
may  be  found in  [8] and [9]. A study of the relationship 
between the results of Hijek  and those given  in the 
present paper may prove worthwhile, in view of the over- 
all desirability of bringing control theoretic tools to bear 

Theorem 4.3: Given system  (1.1)  with A ,  B,, Be con- 
stant real matrices such that (4.1) holds and B, #O. A 
necessary and sufficient condition for the existence of a 
matrix A ,  such  that (4.3) and (4.4) hold is 

on differential games. 
If  we allow the evader  some  measurements of the state, 

the conditions derived in Section I1 may  no longer be 
sufficient for the pursuer to force the initial state to the 
origin in system  (1.4) even in the autonomous case. To see 
that this  is the case consider the following  simple  example. 

Example 4.1: Consider system  (1.1)  with 

The initial event is ( 0, (i)) and it is  easily  seen that 
conditions (2.12) and (2.13) hold. Hence, the initial event 
is  max-min controllable in system  (1.1). If, however, the 
evader employs the linear feedback rule u ( t )  = Kx( t )  with 
K =  (0, l), then no pursuer control can steer the initial 
state to the origin in finite time. 

Example 4.1 indicates that  under certain conditions, the 
evader  has the capability, by  employing a constant linear 
feedback control, to destory the max-min controllability 
property and hence prevent the pursuer  from ever being 
able  to force capture. We will  now  show that this capabil- 
ity is, indeed, quite general. 

Consider system (1.1) with A ,  Bp and Be constant real 
matrices and assume 

We now state the following problem:  Under  what condi- 
tions does there exist an m,xn constant real matrix F 

Proof: Clearly %([A +A,IB,J)= %([AIB,]) for every 
A ,  which  satisfies (4.3). If Ck(B,)c%(B,), then %(A,)c  
%.(I$) and consequently %.([A +A,IB,])= %([A IB,]) and 
hence A ,  cannot  be  found to satisfy  (4.4).  Conversely, 
assume there exists a  subspace T- c %(Be) such that YP 
0, cS;n % (B,) = 0. Write CRn = rY-@ % for a  subspace % 
which  satisfies ‘%(B,)c%. Let P be the projection of R“ 
on cf along flJ, and define A ,  = - PA. This A, clearly 
satisfies  (4.3) and A + A , = ( ] -  P ) A  is such  that %(A + 
A,) c %. Hence, since %(B,) c qK, it  follows that $, ( [A + 
A,IB,]) c %. Since Y E  ?K> (4.4) follows. 0 

Theorem 4.3  shows that when the evader  has access  to 
state  measurements, he can prevent capture for any initial 
state  as long as  (4.5) holds. Hence,  assuming  that feed- 
back is allowed, the only  cases of potential interest are 
those in which %.(Be) c Ck(B,). But then the pursuer can 
essentially undo instantly all the evader’s actions and the 
problem loses many of its more interesting features. 

For the nonantonomous case  [i.e.,  system  (1.4)],  allow- 
ing the evader  only one  obsercation of the state may 
prevent the pursuer from steering (t0,z0) to the origin  even 
though (2.4) and (2.5)  (Le.?  max-min controllability) hold. 
This  phenomenon is illustrated in the following example. 

Example 4.4: Let  the  system matrices be given  by 
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while 

Bp( t )=  0 1 0 , fE[O, l ]  I: : I 
I: : I 

and 
B , ( r ) = B e ( r ) ,  for all r ~ ( 1 , 2 ]  

and 

B p ( f ) =  0 0 0 , for all t>2. 

One can readily  check that 9, [ W, (0,3)] = R 3, and hence 
all events (O,zo) are max-min controllable in time 3. Note, 
however, that ‘3, [ W,(.i-, 3)] 2 3 [ We(7, 3)] for .i- > 2. Hence, 
there are  no max-min controllable events of the form 
(2,z). Thus, if we allow the evader to make one measure- 
ment of the  state  at time 2 the pursuer cannot force the 
solution of (1.4) to the origin. 

Notice that  the property exhibited in Example 4.4  is 
strictly a “ n ~ n a ~ t o n ~ m ~ ~ ~ ”  phenomenon. To see  this, one 
can readily  verify that a sufficient condition [beyond (2.4) 
and (2.5)] for preclusion is a [ W,(T, T ) ]  c 9 [ W,(T. T)] 
for all T E (to, T ) ,  and that  the  autonomous version of  (1.1) 
satisfies this condition. In fact, the same comment holds if 
we  allow the evader any finite number of observations of 
the state. 

One further digression on the subject of feedback is  in 
order. The optimal controls u s  and c*, given  by  (3.22) and 
(3.23),  respectively, may be written in linear feedback 
form. Following  [3,  p. 481,  we obtain 

U*(t)=u*(f,z*(t))=i;(l)((wp~(7,T)Wp(7,T) 

.(we(7,T)- w,(T,T))+Z*(r) 

+ a [ w e ( T ) T ) - W p ( T , T ) ] ) + a [ w , ( 7 , T ) ] )  (4.6) 
and 

C * ( f ) = C * ( f , Z * ( f ) ) = ~ ~ ( f ) ( ( W e ( T , T ) -  W,(T,T))’ 

. Z * ( t ) + q [  we(T,T)] 
+%[ w,(T,T)- W,(T,r) l )  (4.7) 

where z*(r)  is the solution  to  (1.4)  associated  with the 
controls given  in  (3.22) and (3.23).  While  (4.6) and (4.7) 
provide a nonunique closed-loop  synthesis of u* and c*, 
these formulas do not provide optimal feedback control 
laws: indeed, Examples  4.1 and 4.4  show  this. 

We now  shall turn to certain questions of values and 
saddle points. First, consider problem ( P )  and suppose 
the zo E 3 [ W,(to, T)] and ‘3 [ We( to, T ) ]  = ( 3  [ W,( tO. T ) ] .  
We  can define a ”min-max” game: The minimizer  (i.e., 
the chooser of u )  declares  his control first. The maximizer 
then chooses a control t; such that zo is  steered to 0. In 
view of conditions (3.14) and (3.17)  we  see that the max- 
min and min-max simultaneously  exist if and only if zo = 0 
and We(ro. T )  = W,( to, T ) .  Thus, value  in an open-loop 
sense for the restricted endpoint problem discussed  herein 
exists  only for a very  special situation. 
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We shall conclude by noting the connection between 
our results in Section 111, the results of Ho, Bryson, and 
Baron [4], and Isaacs’ approach to differential games. 
Consider a differential game with dynamics (1.4),  payoff 

P ( u , u ) = ( Y l l ~ ( T ) l l 2 + ~ = l l u ~ ~ ~ l l v ( t ) l l ~ ~ t ~ I l ~ ~ ~  10 (0  (4.8) 

where T > r,  is  given, (Y >0, and where there are  no 
terminal restraints. Following  [4],  we  see that a sufficient 
condition for the solvability of the Isaacs’ equation (and 
therefore for the existence of value and a closed-loop 
saddle point) for every (Y > O  is that W,(to, T ) -  We(tO, T )  
>O. Upon comparing the formulas in [4]  for the optimal 
controls in the above differential game with formulas 
(3.22) and (3.23),  we  see that the latter controls are true 
limiting  cases as (Y+X of the former. Hence, by adding 
the “penalty” term ( ~ l l z ( T ) 1 1 ~  to  (1.2) and letting a+co in 
the free endpoint game,  we  have that the value V ( a )  
converges to P ( U * , C * ) ,  our max-min. The approximating 
games  have  closed-loop saddle points, while ( P ) ,  in gen- 
eral, has not even a value in Isaacs’  sense.  Arguing  simi- 
larly, one  can also prove that if o is required to lie in a 
ball { w E R e  : 1 1  w I I  Q /3 } then there exists a feedback law 
u ( z )  for the pursuer such that against any admissible 
evader feedback law  the  associated solution of (1.4)  satis- 
fies 11z( T)i lQ y ,  where y > 0 depends  on /3. As  is seen  in 
Example 4.1,  however, for the case y =O there might not 
be such a pursuer feedback law for any /3 > O .  
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